Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37914962

RESUMO

Β-Carotene is a red-orange pigment that serves as a precursor to important pharmaceutical molecules like vitamin A and retinol, making it highly significant in the industrial sector. Consequently, there is an ongoing quest for more sustainable production methods. In this study, glucose and xylose, two primary sugars derived from sugarcane bagasse (SCB), were utilized as substrates for ß-carotene production by Rhodotorula glutinis CCT-2186. To achieve this, SCB underwent pretreatment using NaOH, involved different concentrations of total solids (TS) (10%, 15%, and 20%) to remove lignin. Each sample was enzymatically hydrolyzed using two substrate loadings (5% and 10%). The pretreated SCB with 10%, 15%, and 20% TS exhibited glucose hydrolysis yields (%wt) of 93.10%, 91.88%, and 90.77%, respectively. The resulting hydrolysate was employed for ß-carotene production under batch fermentation. After 72 h of fermentation, the SCB hydrolysate yielded a ß-carotene concentration of 118.56 ± 3.01 mg/L. These findings showcase the robustness of R. glutinis as a biocatalyst for converting SCB into ß-carotene.

2.
Bioresour Technol ; 386: 129549, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37499926

RESUMO

Lignocellulosic byproducts, mainly generated by the agro-industrial sector, have great potential as cost-effective feedstocks for bioprocesses because of their abundant availability and high content of sugar-rich and nutrient-rich elements. This biomass can be employed as a carbon source to produce various molecules using several microorganisms. Yeast strains have shown their capability to metabolize diverse C5 and C6 carbon sources, thereby facilitating their use in the bioprocessing of lignocellulosic biomass. Furthermore, yeasts can produce a wide range of valuable products, including biofuels, enzymes, proteins, and pigments, making them attractive for use in integrated biorefineries. Yeast-derived pigments have versatile applications and are environmentally friendly alternatives to their synthetic counterparts. This review emphasizes the potential of lignocellulosic biomass as a feedstock for producing yeast-derived products with a focus on pigments as valuable molecules. It also proposes a yeast-derived pigment platform utilizing lignocellulosic byproducts and explores its potential integration in biorefineries.


Assuntos
Lignina , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Lignina/metabolismo , Biocombustíveis , Biomassa
3.
Food Res Int ; 166: 112596, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914347

RESUMO

In the modern world, animal and plant protein may not meet the sustainability criteria due to their high need for arable land and potable water consumption, among other practices. Considering the growing population and food shortage, finding alternative protein sources for human consumption is an urgent issue that needs to be solved, especially in developing countries. In this context, microbial bioconversion of valuable materials in nutritious microbial cells represent a sustainable alternative to the food chain. Microbial protein, also known as single-cell protein (SCP), consist of algae biomass, fungi or bacteria that are currently used as food source for both humans and animals. Besides contributing as a sustainable source of protein to feed the world, producing SCP, is important to reduce waste disposal problems and production costs meeting the sustainable development goals. However, for microbial protein as feed or food to become an important and sustainable alternative, addressing the challenges of raising awareness and achieving wider public regulatory acceptance is real and must be addressed with care and convenience. In this work, we critically reviewed the potential technologies for microbial protein production, its benefits, safety, and limitations associated with its uses, and perspectives for broader large-scale implementation. We argue that the information documented in this manuscript will assist in developing microbial meat as a major protein source for the vegan world.


Assuntos
Desenvolvimento Sustentável , Veganos , Animais , Humanos , Bactérias , Carne , Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...